

SORTING AND SEARCHING
ALGORITHMS

by Thomas Niemann

epaperpress.com

Contents

Contents .. 2
Preface .. 3
Introduction .. 4

Arrays ... 4
Linked Lists .. 5
Timing Estimates.. 5
Summary .. 6

Sorting ... 7
Insertion Sort .. 7
Shell Sort .. 8
Quicksort .. 9
Comparison .. 11
External Sorting.. 11

Dictionaries .. 14
Hash Tables ... 14
Binary Search Trees .. 18
Red-Black Trees .. 20
Skip Lists .. 23
Comparison .. 24

Bibliography ... 26

Preface
This is a collection of algorithms for sorting and searching. Descriptions are brief and intuitive, with
just enough theory thrown in to make you nervous. I assume you know a high-level language, such
as C, and that you are familiar with programming concepts including arrays and pointers.

The first section introduces basic data structures and notation. The next section presents several
sorting algorithms. This is followed by a section on dictionaries, structures that allow efficient insert,
search, and delete operations. The last section describes algorithms that sort data and implement
dictionaries for very large files. Source code for each algorithm, in ANSI C, is included.
Most algorithms have also been coded in Visual Basic. If you are programming in Visual Basic, I
recommend you read Visual Basic Collections and Hash Tables, for an explanation of hashing and
node representation.

If you are interested in translating this document to another language, please send me email.
Special thanks go to Pavel Dubner, whose numerous suggestions were much appreciated. The
following files may be downloaded:

source code (C) (24k)
source code (Visual Basic) (27k)

Permission to reproduce portions of this document is given provided the web site listed below is
referenced, and no additional restrictions apply. Source code, when part of a software project, may
be used freely without reference to the author.

Thomas Niemann
Portland, Oregon
epaperpress.com

http://epaperpress.com/vbhash/index.html
http://epaperpress.com/sortsearch/download/code.zip
http://epaperpress.com/sortsearch/download/codev.zip
http://epaperpress.com/

Introduction
Arrays
Figure 1-1 shows an array, seven elements long, containing numeric values. To search the array
sequentially, we may use the algorithm in Figure 1-2. The maximum number of comparisons is 7,
and occurs when the key we are searching for is in A[6].

Figure 1-1: An Array

int function SequentialSearch (Array A, int Lb, int Ub, int
Key);
 begin
 for i = Lb to Ub do
 if A(i) = Key then
 return i;
 return -1;
 end;

Figure 1-2: Sequential Search

If the data is sorted, a binary search may be done (Figure 1-3). Variables Lb and Ub keep track of
the lower bound and upper bound of the array, respectively. We begin by examining the middle
element of the array. If the key we are searching for is less than the middle element, then it must
reside in the top half of the array. Thus, we set Ub to (M - 1). This restricts our next iteration through
the loop to the top half of the array. In this way, each iteration halves the size of the array to be
searched. For example, the first iteration will leave 3 items to test. After the second iteration, there
will be 1 item left to test. Therefore it takes only three iterations to find any number.

This is a powerful method. Given an array of 1023 elements, we can narrow the search to 511
items in one comparison. Another comparison, and we’re looking at only 255 elements. In fact, we
can search the entire array in only 10 comparisons.

In addition to searching, we may wish to insert or delete entries. Unfortunately, an array is not a
good arrangement for these operations. For example, to insert the number 18 in Figure 1-1, we
would need to shift A[3]...A[6] down by one slot. Then we could copy number 18 into A[3]. A similar
problem arises when deleting numbers. To improve the efficiency of insert and delete operations,
linked lists may be used.

int function BinarySearch (Array A, int Lb, int Ub, int Key);
 begin
 do forever
 M = (Lb + Ub)/2;
 if (Key < A[M]) then
 Ub = M - 1;
 else if (Key > A[M]) then
 Lb = M + 1;
 else
 return M;
 if (Lb > Ub) then
 return -1;
 end;

Figure 1-3: Binary Search

Linked Lists
In Figure 1-4, we have the same values stored in a linked list. Assuming pointers X and P, as shown
in the figure, value 18 may be inserted as follows:

X->Next = P->Next;
P->Next = X;

Insertion and deletion operations are very efficient using linked lists. You may be wondering how
pointer P was set in the first place. Well, we had to do a sequential search to find the insertion point
X. Although we improved our performance for insertion/deletion, it has been at the expense of
search time.

Figure 1-4: A Linked List

Timing Estimates
We can place an upper-bound on the execution time of algorithms using O (big-oh) notation. An
algorithm that runs in O(n2) time indicates that execution time increases with the square of the
dataset size. For example, if we increase dataset size by a factor of ten, execution time will increase
by a factor of 100. A more precise explanation of big-oh follows.

Assume that execution time is some function t(n), where n is the dataset size. The statement

t(n) = O(g(n))

implies that there exists positive constants c and n0 such that

t(n) <= c·g(n)

for all n greater than or equal to n0. This is illustrated graphically in the following figure.

Figure 1-4: Big-Oh

Big-oh notation does not describe the exact time that an algorithm takes, but only indicates an
asymptotic upper bound on execution time within a constant factor. If an algorithm takes O(n2) time,
then execution time grows no worse than the square of the size of the list.

n lg n n7/6 n lg n n2
1 0 1 0 1
16 4 25 64 256
256 8 645 2,048 65,536
4,096 12 16,384 49,152 16,777,216
65,536 16 416,128 1,048,565 4,294,967,296
1,048,576 20 10,568,983 20,971,520 1,099,511,627,776
16,777,216 24 268,435,456 402,653,183 281,474,976,710,656

Table 1-1: Growth Rates

Table 1-1 illustrates growth rates for various functions. A growth rate of O(lg n) occurs for algorithms
similar to the binary search. The lg (logarithm, base 2) function increases by one when n is doubled.
Recall that we can search twice as many items with one more comparison in the binary search.
Thus the binary search is a O(lg n) algorithm.

If the values in Table 1-1 represented microseconds, then a O(n1.25) algorithm may take 10
microseconds to process 1,048,476 items, a O(lg n) algorithm 20 seconds, and a O(n2) algorithm
up to 12 days! In the following chapters a timing estimate for each algorithm, using big-O notation,
will be included. For a more formal derivation of these formulas you may wish to consult the
references.

Summary
As we have seen, sorted arrays may be searched efficiently using a binary search. However, we
must have a sorted array to start with. In the next section various ways to sort arrays will be
examined. It turns out that this is computationally expensive, and considerable research has been
done to make sorting algorithms as efficient as possible.

Linked lists improved the efficiency of insert and delete operations, but searches were sequential
and time-consuming. Algorithms exist that do all three operations efficiently, and they will be the
discussed in the section on dictionaries.

Sorting
Insertion Sort
One of the simplest methods to sort an array is an insertion sort. An example of an insertion sort
occurs in everyday life while playing cards. To sort the cards in your hand you extract a card, shift
the remaining cards, and then insert the extracted card in the correct place. This process is
repeated until all the cards are in the correct sequence. Both average and worst-case time is O(n2).
For further reading, consult Knuth [1998].

Theory
Starting near the top of the array in Figure 2-1(a), we extract the 3. Then the above elements are
shifted down until we find the correct place to insert the 3. This process repeats in Figure 2-1(b)
with the next number. Finally, in Figure 2-1(c), we complete the sort by inserting 2 in the correct
place.

Figure 2-1: Insertion Sort

Assuming there are n elements in the array, we must index through n - 1 entries. For each entry,
we may need to examine and shift up to n - 1 other entries, resulting in a O(n2) algorithm. The
insertion sort is an in-place sort. That is, we sort the array in-place. No extra memory is required.
The insertion sort is also a stable sort. Stable sorts retain the original ordering of keys when identical
keys are present in the input data.

Implementation in C
An ANSI-C implementation for insertion sort is included. Typedef T and comparison operator
compGT should be altered to reflect the data stored in the table.

Implementation in Visual Basic
A Visual Basic implementation for insertion sort is included.

http://www.amazon.com/exec/obidos/ASIN/0201896850/none01
http://epaperpress.com/sortsearch/txt/ins.txt
http://epaperpress.com/sortsearch/txt/vsi.txt

Shell Sort
Shell sort, developed by Donald L. Shell, is a non-stable in-place sort. Shell sort improves on the
efficiency of insertion sort by quickly shifting values to their destination. Average sort time is O(n7/6),
while worst-case time is O(n4/3). For further reading, consult Knuth [1998].

Theory
In Figure 2-2(a) we have an example of sorting by insertion. First we extract 1, shift 3 and 5 down
one slot, and then insert the 1, for a count of 2 shifts. In the next frame, two shifts are required
before we can insert the 2. The process continues until the last frame, where a total of 2 + 2 + 1 =
5 shifts have been made.

In Figure 2-2(b) an example of shell sort is illustrated. We begin by doing an insertion sort using a
spacing of two. In the first frame we examine numbers 3-1. Extracting 1, we shift 3 down one slot
for a shift count of 1. Next we examine numbers 5-2. We extract 2, shift 5 down, and then insert 2.
After sorting with a spacing of two, a final pass is made with a spacing of one. This is simply the
traditional insertion sort. The total shift count using shell sort is 1+1+1 = 3. By using an initial spacing
larger than one, we were able to quickly shift values to their proper destination.

Figure 2-2: Shell Sort

Various spacings may be used to implement a shell sort. Typically the array is sorted with a large
spacing, the spacing reduced, and the array sorted again. On the final sort, spacing is one. Although
the shell sort is easy to comprehend, formal analysis is difficult. In particular, optimal spacing values
elude theoreticians. Knuth recommends a technique, due to Sedgewick, that determines spacing
h based on the following formulas:

hs = 9·2s - 9·2s/2 + 1 if s is even
hs = 8·2s - 6·2(s+1)/2 + 1 if s is odd

These calculations result in values (h0,h1,h2,…) = (1,5,19,41,109,209,…). Calculate h until 3ht >=
N, the number of elements in the array. Then choose ht-1 for a starting value. For example, to sort
150 items, ht = 109 (3·109 >= 150), so the first spacing is ht-1, or 41. The second spacing is 19,
then 5, and finally 1.

http://www.amazon.com/exec/obidos/ASIN/0201896850/none01

Implementation in C
An ANSI-C implementation for shell sort is included. Typedef T and comparison operator compGT
should be altered to reflect the data stored in the array. The central portion of the algorithm is an
insertion sort with a spacing of h.

Implementation in Visual Basic
A Visual Basic implementation for shell sort is included.

Quicksort
Although the shell sort algorithm is significantly better than insertion sort, there is still room for
improvement. One of the most popular sorting algorithms is quicksort. Quicksort executes in
O(n lg n) on average, and O(n2) in the worst-case. However, with proper precautions, worst-case
behavior is very unlikely. Quicksort is a non-stable sort. It is not an in-place sort as stack space is
required. For further reading, consult Cormen [2009].

Theory
The quicksort algorithm works by partitioning the array to be sorted, then recursively sorting each
partition. In Partition (Figure 2-3), one of the array elements is selected as a pivot value. Values
smaller than the pivot value are placed to the left of the pivot, while larger values are placed to the
right.

int function Partition (Array A, int Lb, int Ub);
 begin
 select a pivot from A[Lb]...A[Ub];
 reorder A[Lb]...A[Ub] such that:
 all values to the left of the pivot are <= pivot
 all values to the right of the pivot are >= pivot
 return pivot position;
 end;

procedure QuickSort (Array A, int Lb, int Ub);
 begin
 if Lb < Ub then
 M = Partition (A, Lb, Ub);
 QuickSort (A, Lb, M - 1);
 QuickSort (A, M, Ub);
 end;

Figure 2-3: Quicksort Algorithm

In Figure 2-4(a), the pivot selected is 3. Indices are run starting at both ends of the array. One index
starts on the left and selects an element that is larger than the pivot, while another index starts on
the right and selects an element that is smaller than the pivot. In this case, numbers 4 and 1 are
selected. These elements are then exchanged, as is shown in Figure 2-4(b). This process repeats
until all elements to the left of the pivot <= the pivot, and all elements to the right of the pivot are >=
the pivot. QuickSort recursively sorts the two subarrays, resulting in the array shown in Figure 2-
4(c).

http://epaperpress.com/sortsearch/txt/shl.txt
http://epaperpress.com/sortsearch/txt/vss.txt
http://www.amazon.com/exec/obidos/ASIN/0262033844/none01

Figure 2-4: Quicksort Example

As the process proceeds, it may be necessary to move the pivot so that correct ordering is
maintained. In this manner, QuickSort succeeds in sorting the array. If we’re lucky the pivot selected
will be the median of all values, equally dividing the array. For a moment, let’s assume that this is
the case. Since the array is split in half at each step, and Partition must eventually examine all n
elements, the run time is O(n lg n).

To find a pivot value, Partition could simply select the first element (A[Lb]). All other values would
be compared to the pivot value, and placed either to the left or right of the pivot as appropriate.
However, there is one case that fails miserably. Suppose the array was originally in order. Partition
would always select the lowest value as a pivot and split the array with one element in the left
partition, and Ub - Lb elements in the other. Each recursive call to quicksort would only diminish
the size of the array to be sorted by one. Therefore n recursive calls would be required to do the
sort, resulting in a O(n2) run time. One solution to this problem is to randomly select an item as a
pivot. This would make it extremely unlikely that worst-case behavior would occur.

Implementation in C
An ANSI-C implementation of quicksort is included. Typedef T and comparison operator compGT
should be altered to reflect the data stored in the array. Two version of quicksort are included:
quickSort, and quickSortImproved. Enhancements include:

· The center element is selected as a pivot in partition. If the list is partially ordered, this will
be a good choice. Worst-case behavior occurs when the center element happens to be the
largest or smallest element each time partition is invoked.

· For short arrays, insertSort is called. Due to recursion and other overhead, quicksort is not
an efficient algorithm to use on small arrays. Consequently, any array with fewer than 50
elements is sorted using an insertion sort. Cutoff values of 12-200 are appropriate.

· Tail recursion occurs when the last statement in a function is a call to the function itself.
Tail recursion may be replaced by iteration, resulting in a better utilization of stack space.

· After an array is partitioned, the smallest partition is sorted first. This results in a better
utilization of stack space, as short partitions are quickly sorted and dispensed with.

Included is a version of quicksort that sorts linked-lists. Also included is an ANSI-C implementation,
of qsort, a standard C library function usually implemented with quicksort. Recursive calls were
replaced by explicit stack operations. Table 2-1, shows timing statistics and stack utilization before
and after the enhancements were applied.

http://epaperpress.com/sortsearch/txt/qui.txt
http://epaperpress.com/sortsearch/txt/quilist.txt
http://epaperpress.com/sortsearch/txt/qsort.txt

count time (µs) stacksize
before after before after

16 103 51 540 28
256 1,630 911 912 112

4,096 34,183 20,016 1,908 168
65,536 658,003 460,737 2,436 252

Table 2-1: Effect of Enhancements on Speed and Stack Utilization

Implementation in Visual Basic
A Visual Basic implementation for quick sort and qsort is included.

Comparison
In this section we will compare the sorting algorithms covered: insertion sort, shell sort, and
quicksort. There are several factors that influence the choice of a sorting algorithm:

· Stable sort. Recall that a stable sort will leave identical keys in the same relative position
in the sorted output. Insertion sort is the only algorithm covered that is stable.

· Space. An in-place sort does not require any extra space to accomplish its task. Both
insertion sort and shell sort are in- place sorts. Quicksort requires stack space for recursion,
and therefore is not an in-place sort. Tinkering with the algorithm considerably reduced the
amount of time required.

· Time. The time required to sort a dataset can easily become astronomical (Table 1-1).
Table 2-2 shows the relative timings for each method. The time required to sort a randomly
ordered dataset is shown in Table 2-3.

· Simplicity. The number of statements required for each algorithm may be found in Table
2-2. Simpler algorithms result in fewer programming errors.

method statements average time worst-case time
insertion sort 9 O(n2) O(n2)
shell sort 17 O(n7/6) O(n4/3)
quicksort 21 O(n lg n) O(n2)

Table 2-2: Comparison of Sorting Methods

count insertion shell quicksort
16 39 µs 45 µs 51 µs

256 4,969 µs 1,230 µs 911 µs
4,096 1.315 sec .033 sec .020 sec

65,536 416.437 sec 1.254 sec .461 sec
Table 2-3: Sort Timings

External Sorting
One method for sorting a file is to load the file into memory, sort the data in memory, then write the
results. When the file cannot be loaded into memory due to resource limitations, an external sort
applicable. We will implement an external sort using replacement selection to establish initial runs,
followed by a polyphase merge sort to merge the runs into one sorted file. I highly recommend you
consult Knuth [1998], as many details have been omitted.

Theory
For clarity, I’ll assume that data is on one or more reels of magnetic tape. Figure 4-1 illustrates a
3-way polyphase merge. Initially, in phase A, all data is on tapes T1 and T2. Assume that the

http://epaperpress.com/sortsearch/txt/vsq1.txt
http://epaperpress.com/sortsearch/txt/vsq2.txt
http://epaperpress.com/sortsearch/tim.html%23Tbl1-1
http://www.amazon.com/exec/obidos/ASIN/0201896850/none01

beginning of each tape is at the bottom of the frame. There are two sequential runs of data on T1:
4-8, and 6-7. Tape T2 has one run: 5-9. At phase B, we’ve merged the first run from tapes T1 (4-
8) and T2 (5-9) into a longer run on tape T3 (4-5-8-9). Phase C is simply renames the tapes, so we
may repeat the merge again. In phase D we repeat the merge, with the final output on tape T3.

Phase T1 T2 T3

A
7
6
8
4

9
5

B
7
6

 9
8
5
4

C
9
8
5
4

7
6

D

 9
8
7
6
5
4

Figure 4-1: Merge Sort

Several interesting details have been omitted from the previous illustration. For example, how were
the initial runs created? And, did you notice that they merged perfectly, with no extra runs on any
tapes? Before I explain the method used for constructing initial runs, let me digress for a bit.

In 1202, Leonardo Fibonacci presented the following exercise in his Liber Abbaci (Book of the
Abacus): "How many pairs of rabbits can be produced from a single pair in a year’s time?" We may
assume that each pair produces a new pair of offspring every month, each pair becomes fertile at
the age of one month, and that rabbits never die. After one month, there will be 2 pairs of rabbits;
after two months there will be 3; the following month the original pair and the pair born during the
first month will both usher in a new pair, and there will be 5 in all; and so on. This series, where
each number is the sum of the two preceeding numbers, is known as the Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Curiously, the Fibonacci series has found wide-spread application to everything from the
arrangement of flowers on plants to studying the efficiency of Euclid’s algorithm. There’s even a
Fibonacci Quarterly journal. And, as you might suspect, the Fibonacci series has something to do
with establishing initial runs for external sorts.

Recall that we initially had one run on tape T2, and 2 runs on tape T1. Note that the numbers {1,2}
are two sequential numbers in the Fibonacci series. After our first merge, we had one run on T1
and one run on T2. Note that the numbers {1,1} are two sequential numbers in the Fibonacci series,
only one notch down. We could predict, in fact, that if we had 13 runs on T2, and 21 runs on T1
{13,21}, we would be left with 8 runs on T1 and 13 runs on T3 {8,13} after one pass. Successive
passes would result in run counts of {5,8}, {3,5}, {2,3}, {1,1}, and {0,1}, for a total of 7 passes. This
arrangement is ideal, and will result in the minimum number of passes. Should data actually be on
tape, this is a big savings, as tapes must be mounted and rewound for each pass. For more than
2 tapes, higher-order Fibonacci numbers are used.

Initially, all the data is on one tape. The tape is read, and runs are distributed to other tapes in the
system. After the initial runs are created, they are merged as described above. One method we
could use to create initial runs is to read a batch of records into memory, sort the records, and write
them out. This process would continue until we had exhausted the input tape. An alternative
algorithm, replacement selection, allows for longer runs. A buffer is allocated in memory to act as
a holding place for several records. Initially, the buffer is filled. Then, the following steps are
repeated until the input is exhausted:

· Select the record with the smallest key that is >= the key of the last record written.
· If all keys are smaller than the key of the last record written, then we have reached the end

of a run. Select the record with the smallest key for the first record of the next run.
· Write the selected record.
· Replace the selected record with a new record from input.

Figure 4-2 illustrates replacement selection for a small file. To keep things simple, I’ve allocated a
2-record buffer. Typically, such a buffer would hold thousands of records. We load the buffer in
step B, and write the record with the smallest key (6) in step C. This is replaced with the next record
(key 8). We select the smallest key >= 6 in step D. This is key 7. After writing key 7, we replace it
with key 4. This process repeats until step F, where our last key written was 8, and all keys are less
than 8. At this point, we terminate the run, and start another.

Step Input Buffer Output
A 5-3-4-8-6-7
B 5-3-4-8 6-7
C 5-3-4 8-7 6
D 5-3 8-4 6-7
E 5 3-4 6-7-8
F 5-4 6-7-8 | 3
G 5 6-7-8 | 3-4
H 6-7-8 | 3-4-5

Figure 4-2: Replacement Selection

This strategy simply utilizes an intermediate buffer to hold values until the appropriate time for
output. Using random numbers as input, the average length of a run is twice the length of the buffer.
However, if the data is somewhat ordered, runs can be extremely long. Thus, this method is more
effective than doing partial sorts.

When selecting the next output record, we need to find the smallest key >= the last key written.
One way to do this is to scan the entire list, searching for the appropriate key. However, when the
buffer holds thousands of records, execution time becomes prohibitive. An alternative method is to
use a binary tree structure, so that we only compare lg n items.

Implementation in C
An ANSI-C implementation of an external sort is included. Function makeRuns calls readRec to
read the next record. Function readRec employs the replacement selection algorithm (utilizing a
binary tree) to fetch the next record, and makeRuns distributes the records in a Fibonacci
distribution. If the number of runs is not a perfect Fibonacci number, dummy runs are simulated at
the beginning of each file. Function mergeSort is then called to do a polyphase merge sort on the
runs.

Implementation in Visual Basic
Not implemented.

http://epaperpress.com/sortsearch/txt/ext.txt

Dictionaries
Hash Tables
Hash tables are a simple and effective method to implement dictionaries. Average time to search
for an element is O(1), while worst-case time is O(n). Cormen [2009] and Knuth [1998] both contain
excellent discussions on hashing.

Theory
A hash table is simply an array that is addressed via a hash function. For example, in Figure 3-1,
hashTable is an array with 8 elements. Each element is a pointer to a linked list of numeric data.
The hash function for this example simply divides the data key by 8, and uses the remainder as an
index into the table. This yields a number from 0 to 7. Since the range of indices for hashTable is
0 to 7, we are guaranteed that the index is valid.

Figure 3-1: A Hash Table

To insert a new item in the table, we hash the key to determine which list the item goes on, and
then insert the item at the beginning of the list. For example, to insert 11, we divide 11 by 8 giving
a remainder of 3. Thus, 11 goes on the list starting at hashTable[3]. To find a number, we hash
the number and chain down the correct list to see if it is in the table. To delete a number, we find
the number and remove the node from the linked list.

Entries in the hash table are dynamically allocated and entered on a linked list associated with each
hash table entry. This technique is known as chaining. An alternative method, where all entries are
stored in the hash table itself, is known as open addressing and may be found in the references.

If the hash function is uniform, or equally distributes the data keys among the hash table indices,
then hashing effectively subdivides the list to be searched. Worst-case behavior occurs when all
keys hash to the same index. Then we simply have a single linked list that must be sequentially
searched. Consequently, it is important to choose a good hash function. Several methods may be
used to hash key values. To illustrate the techniques, I will assume unsigned char is 8-bits,
unsigned short int is 16-bits and unsigned long int is 32-bits.

http://www.amazon.com/exec/obidos/ASIN/0262033844/none01
http://www.amazon.com/exec/obidos/ASIN/0201896850/none01

Division method (tablesize = prime). This technique was used in the preceeding example. A
hashValue, from 0 to (HASH_TABLE_SIZE - 1), is computed by dividing the key value by the
size of the hash table and taking the remainder. For example:

typedef int HashIndexType;

HashIndexType hash(int key) {
 return key % HASH_TABLE_SIZE;
}

Selecting an appropriate HASH_TABLE_SIZE is important to the success of this method. For
example, a HASH_TABLE_SIZE divisible by two would yield even hash values for even keys,
and odd hash values for odd keys. This is an undesirable property, as all keys would hash to
even values if they happened to be even. If HASH_TABLE_SIZE is a power of two, then the
hash function simply selects a subset of the key bits as the table index. To obtain a more
random scattering, HASH_TABLE_SIZE should be a prime number not too close to a power
of two.

Multiplication method (tablesize = 2n). The multiplication method may be used for a
HASH_TABLE_SIZE that is a power of 2. The key is multiplied by a constant, and then the
necessary bits are extracted to index into the table. Knuth recommends using the the golden
ratio, or (sqrt(5) - 1)/2, to determine the constant. Assume the hash table contains 32 (25)
entries and is indexed by an unsigned char (8 bits). First construct a multiplier based on the
index and golden ratio. In this example, the multiplier is 28 x (sqrt(5) - 1)/2, or 158. This scales
the golden ratio so that the first bit of the multiplier is "1".

 xxxxxxxx key
 xxxxxxxx multiplier (158)
 xxxxxxxx
 x xxxxxxx
 xx xxxxxx
 xxx xxxxx
 xxxx xxxx
 xxxxx xxx
 xxxxxx xx
 xxxxxxx x
xxxxxxxx bbbbbxxx product

Multiply the key by 158 and extract the 5 most significant bits of the least significant word.
These bits are indicated by "bbbbb" in the above example, and represent a thorough mixing of
the multiplier and key. The following definitions may be used for the multiplication method:

/* 8-bit index */
typedef unsigned char HashIndexType;
static const HashIndexType M = 158;

/* 16-bit index */
typedef unsigned short int HashIndexType;
static const HashIndexType M = 40503;

/* 32-bit index */
typedef unsigned long int HashIndexType;
static const HashIndexType M = 2654435769;

/* w=bitwidth(HashIndexType), size of table=2**n */

static const int S = w - n;
HashIndexType hashValue = (HashIndexType)(M * key) >> S;

For example, if HASH_TABLE_SIZE is 1024 (210), then a 16-bit index is sufficient and S would
be assigned a value of 16 - 10 = 6. Thus, we have:

typedef unsigned short int HashIndexType;

HashIndexType hash(int key) {
 static const HashIndexType M = 40503;
 static const int S = 6;
 return (HashIndexType)(M * key) >> S;
}

Variable string addition method (tablesize = 256). To hash a variable-length string, each
character is added, modulo 256, to a total. A hashValue, range 0-255, is computed.

unsigned char hash(char *str) {
 unsigned char h = 0;
 while (*str) h += *str++;
 return h;
}

Variable string exclusive-or method (tablesize = 256). This method is similar to the addition
method, but successfully distinguishes similar words and anagrams. To obtain a hash value in
the range 0-255, all bytes in the string are exclusive-or’d together. However, in the process of
doing each exclusive-or, a random component is introduced.

unsigned char rand8[256];

unsigned char hash(char *str) {
 unsigned char h = 0;
 while (*str) h = rand8[h ^ *str++];
 return h;
}

Rand8 is a table of 256 8-bit unique random numbers. The exact ordering is not critical. The
exclusive-or method has its basis in cryptography, and is quite effective (Pearson [1990]).

http://www.acm.org/pubs/citations/journals/cacm/1990-33-6/p677-pearson/

Variable string exclusive-or method (tablesize <= 65536). If we hash the string twice, we
may derive a hash value for an arbitrary table size up to 65536. The second time the string is
hashed, one is added to the first character. Then the two 8-bit hash values are concatenated
together to form a 16-bit hash value.

unsigned char rand8[256];

unsigned short int hash(char *str) {
 unsigned short int h;
 unsigned char h1, h2;

 if (*str == 0) return 0;
 h1 = *str; h2 = *str + 1;
 str++;
 while (*str) {
 h1 = rand8[h1 ^ *str];
 h2 = rand8[h2 ^ *str];
 str++;
 }

 /* h is in range 0..65535 */
 h = ((unsigned short int)h1 << 8)|(unsigned short int)h2;

 /* use division method to scale */
 return h % HASH_TABLE_SIZE
}

Assuming n data items, the hash table size should be large enough to accommodate a
reasonable number of entries. As seen in Table 3-1, a small table size substantially increases
the average time to find a key. A hash table may be viewed as a collection of linked lists. As
the table becomes larger, the number of lists increases, and the average number of nodes on
each list decreases. If the table size is 1, then the table is really a single linked list of length n.
Assuming a perfect hash function, a table size of 2 has two lists of length n/2. If the table size
is 100, then we have 100 lists of length n/100. This considerably reduces the length of the list
to be searched.

There is considerable leeway in the choice of table size.

size time size time
1 869 128 9
2 432 256 6
4 214 512 4
8 106 1024 4

16 54 2048 3
32 28 4096 3
64 15 8192 3

Table 3-1: HASH_TABLE_SIZE vs. Average Search Time (us), 4096 entries

Implementation in C
An ANSI-C implementation of a hash table is included. Typedefs recType, keyType and
comparison operator compEQ should be altered to reflect the data stored in the table. The
hashTableSize must be determined and the hashTable allocated. The division method was used
in the hash function. Function insert allocates a new node and inserts it in the table. Function
delete deletes and frees a node from the table. Function find searches the table for a particular
value.

Implementation in Visual Basic
The hash table algorithm has been implemented as objects, using a module for the algorithm, and
a class for the nodes. It has also been implemented as a class, using arrays. The array
implementation is recommended.

Binary Search Trees
In the introduction we used the binary search algorithm to find data stored in an array. This method
is very effective, as each iteration reduced the number of items to search by one-half. However,
since data was stored in an array, insertions and deletions were not efficient. Binary search trees
store data in nodes that are linked in a tree-like fashion. For randomly inserted data, search time is
O(lg n). Worst-case behavior occurs when ordered data is inserted. In this case the search time is
O(n). See Cormen [2009] for a more detailed description.

Theory
A binary search tree is a tree where each node has a left and right child. Either child, or both
children, may be missing. Figure 3-2 illustrates a binary search tree. Assuming k represents the
value of a given node, then a binary search tree also has the following property: all children to the
left of the node have values smaller than k, and all children to the right of the node have values
larger than k. The top of a tree is known as the root, and the exposed nodes at the bottom are
known as leaves. In Figure 3-2, the root is node 20 and the leaves are nodes 4, 16, 37, and 43.
The height of a tree is the length of the longest path from root to leaf. For this example the tree
height is 2.

Figure 3-2: A Binary Search Tree

To search a tree for a given value, we start at the root and work down. For example, to search for
16, we first note that 16 < 20 and we traverse to the left child. The second comparison finds that
16 > 7, so we traverse to the right child. On the third comparison, we succeed.

Each comparison results in reducing the number of items to inspect by one-half. In this respect, the
algorithm is similar to a binary search on an array. However, this is true only if the tree is balanced.
For example, Figure 3-3 shows another tree containing the same values. While it is a binary search
tree, its behavior is more like that of a linked list, with search time increasing proportional to the
number of elements stored.

http://epaperpress.com/sortsearch/txt/has.txt
http://epaperpress.com/sortsearch/txt/vph.txt
http://epaperpress.com/sortsearch/txt/vphn.txt
http://epaperpress.com/sortsearch/txt/vah.txt
http://epaperpress.com/sortsearch/arr.html%23Fig1-3
http://www.amazon.com/exec/obidos/ASIN/0262033844/none01

Figure 3-3: An Unbalanced Binary Search Tree

Insertion and Deletion
Let us examine insertions in a binary search tree to determine the conditions that can cause an
unbalanced tree. To insert an 18 in the tree in Figure 3-2, we first search for that number. This
causes us to arrive at node 16 with nowhere to go. Since 18 > 16, we simply add node 18 to the
right child of node 16 (Figure 3-4).

Now we can see how an unbalanced tree can occur. If the data is presented in an ascending
sequence, each node will be added to the right of the previous node. This will create one long
chain, or linked list. However, if data is presented for insertion in a random order, then a more
balanced tree is possible.

Deletions are similar, but require that the binary search tree property be maintained. For example,
if node 20 in Figure 3-4 is removed, it must be replaced by node 18 or node 37. Assuming we
replace a node by its successor, the resulting tree is shown in Figure 3-5. The rationale for this
choice is as follows. The successor for node 20 must be chosen such that all nodes to the right are
larger. Therefore we need to select the smallest valued node to the right of node 20. To make the
selection, chain once to the right (node 38), and then chain to the left until the last node is found
(node 37). This is the successor for node 20.

Figure 3-4: Binary Tree After Adding Node 18

Figure 3-5: Binary Tree After Deleting Node 20

Implementation in C
An ANSI-C implementation for a binary search tree is included. Typedefs recType, keyType, and
comparison operators compLT and compEQ should be altered to reflect the data stored in the
tree. Each Node consists of left, right, and parent pointers designating each child and the parent.
The tree is based at root, and is initially NULL. Function insert allocates a new node and inserts
it in the tree. Function delete deletes and frees a node from the tree. Function find searches the
tree for a particular value.

Implementation in Visual Basic
The binary tree algorithm has been implemented as objects, using a module for the algorithm, and
a class for the nodes. It has also been implemented as a class, using arrays. The array
implementation is recommended.

Red-Black Trees
Binary search trees work best when they are balanced or the path length from root to any leaf is
within some bounds. The red-black tree algorithm is a method for balancing trees. The name
derives from the fact that each node is colored red or black, and the color of the node is instrumental
in determining the balance of the tree. During insert and delete operations nodes may be rotated
to maintain tree balance. Both average and worst-case insert, delete, and search time is O(lg n).
For details, consult Cormen [2009].

Theory
A red-black tree is a balanced binary search tree with the following properties:

1. Every node is colored red or black.
2. Every leaf is a NIL node, and is colored black.
3. If a node is red, then both its children are black.
4. Every simple path from a node to a descendant leaf contains the same number of black

nodes.
5. The root is always black.

The number of black nodes on a path from root to leaf is known as the black-height of a tree. The
above properties guarantee that any path from the root to a leaf is no more than twice as long as
any other path. To see why this is true, consider a tree with a black-height of three. The shortest
distance from root to leaf is two (B-B-B). The longest distance from root to leaf is four (B-R-B-R-B).
It is not possible to insert more black nodes as this would violate property 4. Since red nodes must
have black children (property 3), having two red nodes in a row is not allowed. The largest path we
can construct consists of an alternation of red and black nodes.

http://epaperpress.com/sortsearch/txt/bin.txt
http://epaperpress.com/sortsearch/txt/vpb.txt
http://epaperpress.com/sortsearch/txt/vpbn.txt
http://epaperpress.com/sortsearch/txt/vab.txt
http://www.amazon.com/exec/obidos/ASIN/0262033844/none01

In general, given a tree with a black-height of n, the shortest distance from root to leaf is n - 1, and
the longest distance is 2(n - 1). All operations on the tree must maintain the properties listed above.
In particular, operations that insert or delete nodes from the tree must abide by these rules.

Insertion
To insert a node, search the tree for an insertion point and add the node to the tree. The new node
replaces an existing NIL node at the bottom of the tree, and has two NIL nodes as children. In the
implementation, a NIL node is simply a pointer to a common sentinel node that is colored black.
Attention C programmers — this is not a NULL pointer! After insertion the new node is colored red.
Then the parent of the node is examined to determine if the red-black tree properties have been
maintained. If necessary, make adjustments to balance the tree.

The black-height property (property 4) is preserved when we insert a red node with two NIL
children. We must also ensure that both children of a red node are black (property 3). Although
both children of the new node are black (they’re NIL), consider the case where the parent of the
new node is red. Inserting a red node under a red parent would violate this property. There are two
cases to consider.

Red Parent, Red Uncle
Figure 3-6 illustrates a red-red violation. Node X is the newly inserted node, and both parent and
uncle are colored red. A simple recoloring removes the red-red violation. After recoloring the
grandparent (node B) must be checked for validity, as its parent may also be red and we can't have
two red nodes in a row. This has the effect of propagating a red node up the tree. On completion
the root of the tree is marked black. If it was originally red the black-height of the tree increases by
one.

Figure 3-6: Insertion - Red Parent, Red Uncle

Red Parent, Black Uncle
Figure 3-7 illustrates a red-red violation where the uncle is colored black. If we attempt to recolor
nodes, changing node A to black, the tree is out of balance since we've increased the black-height
of the left branch without changing the right branch. If we also change node B to red, then the
black-height of both branches is reduced and the tree is still out of balance. If we start over and
change node A to black and node C to red the situation is worse since we've increased the black-

height of the left branch, and decreased the black-height of the right branch. To solve this problem
we will rotate and recolor the nodes as shown. At this point the algorithm terminates since the top
of the subtree (node A) is colored black and no red-red conflicts were introduced.

Figure 3-7: Insertion - Red Parent, Black Uncle

Termination
To insert a node we may have to recolor or rotate to preserve the red-black tree properties. If
rotation is done, the algorithm terminates. For simple recolorings we're left with a red node at the
head of the subtree and must travel up the tree one step and repeat the process to ensure the
black-height properties are preserved. In the worst case we must go all the way to the root. Timing
for insertion is O(lg n). The technique and timing for deletion is similar.

Implementation in C
An ANSI-C implementation for red-black trees is included. Typedefs recType, keyType, and
comparison operators compLT and compEQ should be altered to reflect the data stored in the
tree. Each node consists of left, right, and parent pointers designating each child and the parent.
The node color is stored in color, and is either RED or BLACK. All leaf nodes of the tree are sentinel
nodes, to simplify coding. The tree is based at root, and initially is a sentinel node.

Function insert allocates a new node and inserts it in the tree. Subsequently, it calls insertFixup
to ensure that the red-black tree properties are maintained. Function erase deletes a node from
the tree. To maintain red-black tree properties, deleteFixup is called. Function find searches the
tree for a particular value. Support for iterators is included.

Implementation in Visual Basic
The red-black tree algorithm has been implemented as objects, using a module for the algorithm,
and a class for the nodes. It has also been implemented as a class, using arrays. The array
implementation is recommended.

http://epaperpress.com/sortsearch/txt/rbt.txt
http://epaperpress.com/sortsearch/txt/vpr.txt
http://epaperpress.com/sortsearch/txt/vprn.txt
http://epaperpress.com/sortsearch/txt/var.txt

Skip Lists
Skip lists are linked lists that allow you to skip to the correct node. The performance bottleneck
inherent in a sequential scan is avoided, while insertion and deletion remain relatively efficient.
Average search time is O(lg n). Worst-case search time is O(n), but is extremely unlikely. An
excellent reference for skip lists is Pugh [1990].

Theory
The indexing scheme employed in skip lists is similar in nature to the method used to lookup names
in an address book. To lookup a name, you index to the tab representing the first character of the
desired entry. In Figure 3-8, for example, the top-most list represents a simple linked list with no
tabs. Adding tabs (middle figure) facilitates the search. In this case, level-1 pointers are traversed.
Once the correct segment of the list is found, level-0 pointers are traversed to find the specific entry.

Figure 3-8: Skip List Construction

The indexing scheme may be extended as shown in the bottom figure, where we now have an
index to the index. To locate an item, level-2 pointers are traversed until the correct segment of the
list is identified. Subsequently, level-1 and level-0 pointers are traversed.

During insertion the number of pointers required for a new node must be determined. This is easily
resolved using a probabilistic technique. A random number generator is used to toss a computer
coin. When inserting a new node, the coin is tossed to determine if it should be level-1. If you lose,
the coin is tossed again to determine if the node should be level-2. Another loss and the coin is
tossed to determine if the node should be level-3. This process repeats until you win. If only one
level (level-0) is implemented, the data structure is a simple linked-list with O(n) search time.
However, if sufficient levels are implemented, the skip list may be viewed as a tree with the root at
the highest level, and search time is O(lg n).

The skip list algorithm has a probabilistic component, and thus a probabilistic bounds on the time
required to execute. However, these bounds are quite tight in normal circumstances. For example,
to search a list containing 1000 items, the probability that search time will be 5 times the average
is about 1 in 1,000,000,000,000,000,000.

Implementation in C
An ANSI-C implementation for skip lists is included. Typedefs recType, keyType, and comparison
operators compLT and compEQ should be altered to reflect the data stored in the list. In addition,
MAXLEVEL should be set based on the maximum size of the dataset.

http://epaperpress.com/sortsearch/download/skiplist.pdf
http://epaperpress.com/sortsearch/txt/skl.txt

To initialize, initList is called. The list header is allocated and initialized. To indicate an empty list,
all levels are set to point to the header. Function insert allocates a new node, searches for the
correct insertion point, and inserts it in the list. While searching, the update array maintains pointers
to the upper-level nodes encountered. This information is subsequently used to establish correct
links for the newly inserted node. The newLevel is determined using a random number generator,
and the node allocated. The forward links are then established using information from the update
array. Function delete deletes and frees a node, and is implemented in a similar manner. Function
find searches the list for a particular value.

Implementation in Visual Basic
Each node in a skip list varies in size depending on a random number generated at time of insertion.
Instantiating a class with dynamic size is a bit of a sticky wicket in Visual Basic.

Comparison
We have seen several ways to construct dictionaries: hash tables, unbalanced binary search trees,
red-black trees, and skip lists. There are several factors that influence the choice of an algorithm:

Sorted output. If sorted output is required, then hash tables are not a viable alternative. Entries
are stored in the table based on their hashed value, with no other ordering. For binary trees,
the story is different. An in-order tree walk will produce a sorted list. For example:

void WalkTree(Node *P) {
 if (P == NIL) return;
 WalkTree(P->Left);

 /* examine P->Data here */

 WalkTree(P->Right);
}
WalkTree(Root);

To examine skip list nodes in order, simply chain through the level-0 pointers. For example:

Node *P = List.Hdr->Forward[0];
while (P != NIL) {

 /* examine P->Data here */

 P = P->Forward[0];
}

Space. The amount of memory required to store a value should be minimized. This is especially
true if many small nodes are to be allocated.
For hash tables, only one forward pointer per node is required. In addition, the hash table itself
must be allocated.

For red-black trees, each node has a left, right, and parent pointer. In addition, the color of each
node must be recorded. Although this requires only one bit, more space may be allocated to
ensure that the size of the structure is properly aligned. Therefore each node in a red-black
tree requires enough space for 3-4 pointers.

For skip lists, each node has a level-0 forward pointer. The probability of having a level-1
pointer is 1/2. The probability of having a level-2 pointer is 1/4. In general, the number of forward
pointers per node is

n = 1 + 1/2 + 1/4 + ... = 2.

Time. The algorithm should be efficient. This is especially true if a large dataset is expected.
Table 3-2 compares the search time for each algorithm. Note that worst-case behavior for hash
tables and skip lists is extremely unlikely. Actual timing tests are described below.

Simplicity. If the algorithm is short and easy to understand, fewer mistakes may be made. This
not only makes your life easy, but the maintenance programmer entrusted with the task of
making repairs will appreciate any efforts you make in this area. The number of statements
required for each algorithm is listed in Table 3-2.

method statements average time worst-case time
hash table 26 O(1) O(n)
unbalanced tree 41 O(lg n) O(n)
red-black tree 120 O(lg n) O(lg n)
skip list 55 O(lg n) O(n)

Table 3-2: Comparison of Dictionaries

Average time for insert, search, and delete operations on a database of 65,536 (216) randomly
input items may be found in Table 3-3. For this test the hash table size was 10,009 and 16 index
levels were allowed for the skip list. Although there is some variation in the timings for the four
methods, they are close enough so that other considerations should come into play when selecting
an algorithm.

method insert search delete
hash table 18 8 10
unbalanced tree 37 17 26
red-black tree 40 16 37
skip list 48 31 35

Table 3-3: Average Time (us), 65536 Items, Random Input

Table 3-4 shows the average search time for two sets of data: a random set, where all values are
unique, and an ordered set, where values are in ascending order. Ordered input creates a worst-
case scenario for unbalanced tree algorithms, as the tree ends up being a simple linked list. The
times shown are for a single search operation. If we were to search for all items in a database of
65,536 values, a red-black tree algorithm would take .6 seconds, while an unbalanced tree
algorithm would take 1 hour.

random
input

count hash table unbalanced tree red-black tree skip list
16 4 3 2 5
256 3 4 4 9
4,096 3 7 6 12
65,536 8 17 16 31

ordered
input

16 3 4 2 4
256 3 47 4 7
4,096 3 1,033 6 11
65,536 7 55,019 9 15

Table 3-4: Average Search Time (us)

Bibliography
Aho, Alfred V. and Jeffrey D. Ullman [1983]. Data Structures and Algorithms. Addison-Wesley,
Reading, Massachusetts.

Cormen, Thomas H., Charles E. [2009]. Introduction to Algorithms , 2nd edition. McGraw-Hill, New
York.

Knuth, Donald E. [1998]. The Art of Computer Programming, Volume 3, Sorting and Searching.
Addison-Wesley, Reading, Massachusetts.

Pearson, Peter K. [1990]. Fast Hashing of Variable-Length Text Strings. Communications of the
ACM, 33(6):677-680, June 1990.

Pugh, William [1990]. Skip Lists: A Probabilistic Alternative to Balanced Trees. Communications of
the ACM, 33(6):668-676, June 1990.

Stephens, Rod [1998]. Ready-to-Run Visual Basic Algorithms. John Wiley & Sons, New York.

http://www.amazon.com/exec/obidos/ASIN/0201000237/none01
http://www.amazon.com/exec/obidos/ASIN/0262033844/none01
http://www.amazon.com/exec/obidos/ASIN/0201896850/none01
http://www.acm.org/pubs/citations/journals/cacm/1990-33-6/p677-pearson/
http://epaperpress.com/sortsearch/download/skiplist.pdf
http://www.amazon.com/exec/obidos/ASIN/0471242683/none01

	Contents
	Preface
	Introduction
	Arrays
	Linked Lists
	Timing Estimates
	Summary

	Sorting
	Insertion Sort
	Theory
	Implementation in C
	Implementation in Visual Basic

	Shell Sort
	Theory
	Implementation in C
	Implementation in Visual Basic

	Quicksort
	Theory
	Implementation in C
	Implementation in Visual Basic

	Comparison
	External Sorting
	Theory
	Implementation in C
	Implementation in Visual Basic

	Dictionaries
	Hash Tables
	Theory
	Implementation in C
	Implementation in Visual Basic

	Binary Search Trees
	Theory
	Implementation in C
	Implementation in Visual Basic

	Red-Black Trees
	Theory
	Insertion
	Implementation in C
	Implementation in Visual Basic

	Skip Lists
	Theory
	Implementation in C
	Implementation in Visual Basic

	Comparison

	Bibliography

