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Preface 
This is a collection of algorithms for sorting and searching. Descriptions are brief and intuitive, with 
just enough theory thrown in to make you nervous. I assume you know a high-level language, such 
as C, and that you are familiar with programming concepts including arrays and pointers. 
  
The first section introduces basic data structures and notation. The next section presents several 
sorting algorithms. This is followed by a section on dictionaries, structures that allow efficient insert, 
search, and delete operations. The last section describes algorithms that sort data and implement 
dictionaries for very large files. Source code for each algorithm, in ANSI C, is included.  
Most algorithms have also been coded in Visual Basic. If you are programming in Visual Basic, I 
recommend you read Visual Basic Collections and Hash Tables, for an explanation of hashing and 
node representation. 
 
If you are interested in translating this document to another language, please send me email. 
Special thanks go to Pavel Dubner, whose numerous suggestions were much appreciated. The 
following files may be downloaded: 
 

source code (C) (24k)  
source code (Visual Basic) (27k)  
 

Permission to reproduce portions of this document is given provided the web site listed below is 
referenced, and no additional restrictions apply. Source code, when part of a software project, may 
be used freely without reference to the author. 
  
Thomas Niemann 
Portland,  Oregon 
epaperpress.com  

http://epaperpress.com/vbhash/index.html
http://epaperpress.com/sortsearch/download/code.zip
http://epaperpress.com/sortsearch/download/codev.zip
http://epaperpress.com/


Introduction 
Arrays 
Figure 1-1 shows an array, seven elements long, containing numeric values. To search the array 
sequentially, we may use the algorithm in Figure 1-2. The maximum number of comparisons is 7, 
and occurs when the key we are searching for is in A[6]. 

 
Figure 1-1: An Array 

 
int function SequentialSearch (Array A, int Lb, int Ub, int 
Key); 
  begin 
  for i = Lb to Ub do 
    if A(i) =  Key then 
      return i; 
  return -1; 
  end; 

Figure 1-2: Sequential Search 
 
If the data is sorted, a binary search may be done (Figure 1-3). Variables Lb and Ub keep track of 
the lower bound and upper bound of the array, respectively. We begin by examining the middle 
element of the array. If the key we are searching for is less than the middle element, then it must 
reside in the top half of the array. Thus, we set Ub to (M - 1). This restricts our next iteration through 
the loop to the top half of the array. In this way, each iteration halves the size of the array to be 
searched. For example, the first iteration will leave 3 items to test. After the second iteration, there 
will be 1 item left to test. Therefore it takes only three iterations to find any number. 
 
This is a powerful method. Given an array of 1023 elements, we can narrow the search to 511 
items in one comparison. Another comparison, and we’re looking at only 255 elements. In fact, we 
can search the entire array in only 10 comparisons.  
 
In addition to searching, we may wish to insert or delete entries. Unfortunately, an array is not a 
good arrangement for these operations. For example, to insert the number 18 in Figure 1-1, we 
would need to shift A[3]...A[6] down by one slot. Then we could copy number 18 into A[3]. A similar 
problem arises when deleting numbers. To improve the efficiency of insert and delete operations, 
linked lists may be used. 
  



int function BinarySearch (Array A, int Lb, int Ub, int Key); 
  begin 
  do forever 
    M = (Lb + Ub)/2; 
    if (Key < A[M]) then 
      Ub = M - 1; 
    else if (Key > A[M]) then 
      Lb = M + 1; 
    else 
      return M; 
    if (Lb > Ub) then 
      return -1; 
  end; 

Figure 1-3: Binary Search 

Linked Lists 
In Figure 1-4, we have the same values stored in a linked list. Assuming pointers X and P, as shown 
in the figure, value 18 may be inserted as follows: 
 

X->Next = P->Next; 
P->Next = X; 

 
Insertion and deletion operations are very efficient using linked lists. You may be wondering how 
pointer P was set in the first place. Well, we had to do a sequential search to find the insertion point 
X. Although we improved our performance for insertion/deletion, it has been at the expense of 
search time. 
  

 
Figure 1-4: A Linked List 

 

Timing Estimates 
We can place an upper-bound on the execution time of algorithms using O (big-oh) notation. An 
algorithm that runs in O(n2) time indicates that execution time increases with the square of the 
dataset size. For example, if we increase dataset size by a factor of ten, execution time will increase 
by a factor of 100. A more precise explanation of big-oh follows. 
 
Assume that execution time is some function t(n), where n is the dataset size. The statement 
 

t(n) = O(g(n)) 
 
implies that there exists positive constants c and n0 such that 
 

t(n) <= c·g(n) 
 
for all n greater than or equal to n0. This is illustrated graphically in the following figure.  



 

 
 

Figure 1-4: Big-Oh 
 
Big-oh notation does not describe the exact time that an algorithm takes, but only indicates an 
asymptotic upper bound on execution time within a constant factor. If an algorithm takes O(n2) time, 
then execution time grows no worse than the square of the size of the list. 
 

n lg n n7/6 n lg n n2  
1 0 1 0 1 
16 4 25 64 256 
256 8 645 2,048 65,536 
4,096 12 16,384 49,152 16,777,216 
65,536 16 416,128 1,048,565 4,294,967,296 
1,048,576 20 10,568,983 20,971,520 1,099,511,627,776 
16,777,216 24 268,435,456 402,653,183 281,474,976,710,656 

Table 1-1: Growth Rates 
 
Table 1-1 illustrates growth rates for various functions. A growth rate of O(lg n) occurs for algorithms 
similar to the binary search. The lg (logarithm, base 2) function increases by one when n is doubled. 
Recall that we can search twice as many items with one more comparison in the binary search. 
Thus the binary search is a O(lg n) algorithm.  
 
If the values in Table 1-1 represented microseconds, then a O(n1.25) algorithm may take 10 
microseconds to process 1,048,476 items, a O(lg n) algorithm 20 seconds, and a O(n2) algorithm 
up to 12 days! In the following chapters a timing estimate for each algorithm, using big-O notation, 
will be included. For a more formal derivation of these formulas you may wish to consult the 
references. 

Summary 
As we have seen, sorted arrays may be searched efficiently using a binary search. However, we 
must have a sorted array to start with. In the next section various ways to sort arrays will be 
examined. It turns out that this is computationally expensive, and considerable research has been 
done to make sorting algorithms as efficient as possible.  
 
Linked lists improved the efficiency of insert and delete operations, but searches were sequential 
and time-consuming. Algorithms exist that do all three operations efficiently, and they will be the 
discussed in the section on dictionaries.  
 



Sorting 
Insertion Sort 
One of the simplest methods to sort an array is an insertion sort. An example of an insertion sort 
occurs in everyday life while playing cards. To sort the cards in your hand you extract a card, shift 
the remaining cards, and then insert the extracted card in the correct place. This process is 
repeated until all the cards are in the correct sequence. Both average and worst-case time is O(n2). 
For further reading, consult Knuth [1998].  

Theory 
Starting near the top of the array in Figure 2-1(a), we extract the 3. Then the above elements are 
shifted down until we find the correct place to insert the 3. This process repeats in Figure 2-1(b) 
with the next number. Finally, in Figure 2-1(c), we complete the sort by inserting 2 in the correct 
place.  

 
Figure 2-1: Insertion Sort 

 
Assuming there are n elements in the array, we must index through n - 1 entries. For each entry, 
we may need to examine and shift up to n - 1 other entries, resulting in a O(n2) algorithm. The 
insertion sort is an in-place sort. That is, we sort the array in-place. No extra memory is required. 
The insertion sort is also a stable sort. Stable sorts retain the original ordering of keys when identical 
keys are present in the input data.  

Implementation in C 
An ANSI-C implementation for insertion sort is included. Typedef T and comparison operator 
compGT should be altered to reflect the data stored in the table.  

Implementation in Visual Basic 
A Visual Basic implementation for insertion sort is included.  
 

http://www.amazon.com/exec/obidos/ASIN/0201896850/none01
http://epaperpress.com/sortsearch/txt/ins.txt
http://epaperpress.com/sortsearch/txt/vsi.txt


Shell Sort 
Shell sort, developed by Donald L. Shell, is a non-stable in-place sort. Shell sort improves on the 
efficiency of insertion sort by quickly shifting values to their destination. Average sort time is O(n7/6), 
while worst-case time is O(n4/3). For further reading, consult Knuth [1998].  

Theory 
In Figure 2-2(a) we have an example of sorting by insertion. First we extract 1, shift 3 and 5 down 
one slot, and then insert the 1, for a count of 2 shifts. In the next frame, two shifts are required 
before we can insert the 2. The process continues until the last frame, where a total of 2 + 2 + 1 = 
5 shifts have been made.  
 
In Figure 2-2(b) an example of shell sort is illustrated. We begin by doing an insertion sort using a 
spacing of two. In the first frame we examine numbers 3-1. Extracting 1, we shift 3 down one slot 
for a shift count of 1. Next we examine numbers 5-2. We extract 2, shift 5 down, and then insert 2. 
After sorting with a spacing of two, a final pass is made with a spacing of one. This is simply the 
traditional insertion sort. The total shift count using shell sort is 1+1+1 = 3. By using an initial spacing 
larger than one, we were able to quickly shift values to their proper destination.  

 
Figure 2-2: Shell Sort 

 
Various spacings may be used to implement a shell sort. Typically the array is sorted with a large 
spacing, the spacing reduced, and the array sorted again. On the final sort, spacing is one. Although 
the shell sort is easy to comprehend, formal analysis is difficult. In particular, optimal spacing values 
elude theoreticians. Knuth recommends a technique, due to Sedgewick, that determines spacing 
h based on the following formulas: 
 

hs = 9·2s - 9·2s/2 + 1  if s is even 
hs = 8·2s - 6·2(s+1)/2 + 1 if s is odd  
 

These calculations result in values (h0,h1,h2,…) = (1,5,19,41,109,209,…). Calculate h until 3ht >= 
N, the number of elements in the array. Then choose ht-1 for a starting value. For example, to sort 
150 items, ht = 109 (3·109 >= 150), so the first spacing is ht-1, or 41. The second spacing is 19, 
then 5, and finally 1.  

http://www.amazon.com/exec/obidos/ASIN/0201896850/none01


Implementation in C 
An ANSI-C implementation for shell sort is included. Typedef T and comparison operator compGT 
should be altered to reflect the data stored in the array. The central portion of the algorithm is an 
insertion sort with a spacing of h. 

Implementation in Visual Basic 
A Visual Basic implementation for shell sort is included.  

Quicksort 
Although the shell sort algorithm is significantly better than insertion sort, there is still room for 
improvement. One of the most popular sorting algorithms is quicksort. Quicksort executes in 
O(n lg n) on average, and O(n2) in the worst-case. However, with proper precautions, worst-case 
behavior is very unlikely. Quicksort is a non-stable sort. It is not an in-place sort as stack space is 
required. For further reading, consult Cormen [2009].  

Theory 
The quicksort algorithm works by partitioning the array to be sorted, then recursively sorting each 
partition. In Partition (Figure 2-3), one of the array elements is selected as a pivot value. Values 
smaller than the pivot value are placed to the left of the pivot, while larger values are placed to the 
right. 
 

int function Partition (Array A, int Lb, int Ub); 
  begin 
  select a pivot from A[Lb]...A[Ub]; 
  reorder A[Lb]...A[Ub] such that: 
    all values to the left of the pivot are <= pivot 
    all values to the right of the pivot are >= pivot 
  return pivot position; 
  end; 
 
procedure QuickSort (Array A, int Lb, int Ub); 
  begin 
  if Lb < Ub then 
    M = Partition (A, Lb, Ub); 
    QuickSort (A, Lb, M - 1); 
    QuickSort (A, M, Ub); 
  end; 

Figure 2-3: Quicksort Algorithm 
 
In Figure 2-4(a), the pivot selected is 3. Indices are run starting at both ends of the array. One index 
starts on the left and selects an element that is larger than the pivot, while another index starts on 
the right and selects an element that is smaller than the pivot. In this case, numbers 4 and 1 are 
selected. These elements are then exchanged, as is shown in Figure 2-4(b). This process repeats 
until all elements to the left of the pivot <= the pivot, and all elements to the right of the pivot are >= 
the pivot. QuickSort recursively sorts the two subarrays, resulting in the array shown in Figure 2-
4(c).  

http://epaperpress.com/sortsearch/txt/shl.txt
http://epaperpress.com/sortsearch/txt/vss.txt
http://www.amazon.com/exec/obidos/ASIN/0262033844/none01


 
Figure 2-4: Quicksort Example 

 
As the process proceeds, it may be necessary to move the pivot so that correct ordering is 
maintained. In this manner, QuickSort succeeds in sorting the array. If we’re lucky the pivot selected 
will be the median of all values, equally dividing the array. For a moment, let’s assume that this is 
the case. Since the array is split in half at each step, and Partition must eventually examine all n 
elements, the run time is O(n lg n).  
 
To find a pivot value, Partition could simply select the first element (A[Lb]). All other values would 
be compared to the pivot value, and placed either to the left or right of the pivot as appropriate. 
However, there is one case that fails miserably. Suppose the array was originally in order. Partition 
would always select the lowest value as a pivot and split the array with one element in the left 
partition, and Ub - Lb elements in the other. Each recursive call to quicksort would only diminish 
the size of the array to be sorted by one. Therefore n recursive calls would be required to do the 
sort, resulting in a O(n2) run time. One solution to this problem is to randomly select an item as a 
pivot. This would make it extremely unlikely that worst-case behavior would occur.  

Implementation in C 
An ANSI-C implementation of quicksort is included. Typedef T and comparison operator compGT 
should be altered to reflect the data stored in the array. Two version of quicksort are included: 
quickSort, and quickSortImproved. Enhancements include:  
 

· The center element is selected as a pivot in partition. If the list is partially ordered, this will 
be a good choice. Worst-case behavior occurs when the center element happens to be the 
largest or smallest element each time partition is invoked.  

· For short arrays, insertSort is called. Due to recursion and other overhead, quicksort is not 
an efficient algorithm to use on small arrays. Consequently, any array with fewer than 50 
elements is sorted using an insertion sort. Cutoff values of 12-200 are appropriate.  

· Tail recursion occurs when the last statement in a function is a call to the function itself. 
Tail recursion may be replaced by iteration, resulting in a better utilization of stack space.  

· After an array is partitioned, the smallest partition is sorted first. This results in a better 
utilization of stack space, as short partitions are quickly sorted and dispensed with.  

 
Included is a version of quicksort that sorts linked-lists. Also included is an ANSI-C implementation, 
of qsort, a standard C library function usually implemented with quicksort. Recursive calls were 
replaced by explicit stack operations. Table 2-1, shows timing statistics and stack utilization before 
and after the enhancements were applied.  
 
 

http://epaperpress.com/sortsearch/txt/qui.txt
http://epaperpress.com/sortsearch/txt/quilist.txt
http://epaperpress.com/sortsearch/txt/qsort.txt


count time (µs) stacksize 
before after before after 

16 103 51 540 28 
256 1,630 911 912 112 

4,096 34,183 20,016 1,908 168 
65,536 658,003 460,737 2,436 252 

 
Table 2-1: Effect of Enhancements on Speed and Stack Utilization 

Implementation in Visual Basic 
A Visual Basic implementation for quick sort and qsort is included. 

Comparison 
In this section we will compare the sorting algorithms covered: insertion sort, shell sort, and 
quicksort. There are several factors that influence the choice of a sorting algorithm:  
 

· Stable sort. Recall that a stable sort will leave identical keys in the same relative position 
in the sorted output. Insertion sort is the only algorithm covered that is stable.  

· Space. An in-place sort does not require any extra space to accomplish its task. Both 
insertion sort and shell sort are in- place sorts. Quicksort requires stack space for recursion, 
and therefore is not an in-place sort. Tinkering with the algorithm considerably reduced the 
amount of time required.  

· Time. The time required to sort a dataset can easily become astronomical (Table 1-1). 
Table 2-2 shows the relative timings for each method. The time required to sort a randomly 
ordered dataset is shown in Table 2-3.  

· Simplicity. The number of statements required for each algorithm may be found in Table 
2-2. Simpler algorithms result in fewer programming errors.  

 
method statements average time worst-case time 
insertion sort 9 O(n2) O(n2) 
shell sort 17 O(n7/6) O(n4/3) 
quicksort 21 O(n lg n) O(n2) 

Table 2-2: Comparison of Sorting Methods 
 

count insertion shell quicksort 
16 39 µs 45 µs 51 µs 

256 4,969 µs 1,230 µs 911 µs 
4,096 1.315 sec .033 sec .020 sec 

65,536 416.437 sec 1.254 sec .461 sec 
Table 2-3: Sort Timings 

External Sorting 
One method for sorting a file is to load the file into memory, sort the data in memory, then write the 
results. When the file cannot be loaded into memory due to resource limitations, an external sort 
applicable. We will implement an external sort using replacement selection to establish initial runs, 
followed by a polyphase merge sort to merge the runs into one sorted file. I highly recommend you 
consult Knuth [1998], as many details have been omitted.  

Theory 
For clarity, I’ll assume that data is on one or more reels of magnetic tape. Figure 4-1 illustrates a 
3-way polyphase merge. Initially, in phase A, all data is on tapes T1 and T2. Assume that the 

http://epaperpress.com/sortsearch/txt/vsq1.txt
http://epaperpress.com/sortsearch/txt/vsq2.txt
http://epaperpress.com/sortsearch/tim.html%23Tbl1-1
http://www.amazon.com/exec/obidos/ASIN/0201896850/none01


beginning of each tape is at the bottom of the frame. There are two sequential runs of data on T1: 
4-8, and 6-7. Tape T2 has one run: 5-9. At phase B, we’ve merged the first run from tapes T1 (4-
8) and T2 (5-9) into a longer run on tape T3 (4-5-8-9). Phase C is simply renames the tapes, so we 
may repeat the merge again. In phase D we repeat the merge, with the final output on tape T3. 
 

Phase T1 T2 T3 

A 
7 
6 
8 
4 

9 
5 

 

B 
7 
6 

 9 
8 
5 
4 

C 
9 
8 
5 
4 

7 
6 

 

D 

  9 
8 
7 
6 
5 
4 

 
Figure 4-1: Merge Sort 

 
Several interesting details have been omitted from the previous illustration. For example, how were 
the initial runs created? And, did you notice that they merged perfectly, with no extra runs on any 
tapes? Before I explain the method used for constructing initial runs, let me digress for a bit.  
 
In 1202, Leonardo Fibonacci presented the following exercise in his Liber Abbaci (Book of the 
Abacus): "How many pairs of rabbits can be produced from a single pair in a year’s time?" We may 
assume that each pair produces a new pair of offspring every month, each pair becomes fertile at 
the age of one month, and that rabbits never die. After one month, there will be 2 pairs of rabbits; 
after two months there will be 3; the following month the original pair and the pair born during the 
first month will both usher in a new pair, and there will be 5 in all; and so on. This series, where 
each number is the sum of the two preceeding numbers, is known as the Fibonacci sequence:  
 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... .  
 
Curiously, the Fibonacci series has found wide-spread application to everything from the 
arrangement of flowers on plants to studying the efficiency of Euclid’s algorithm. There’s even a 
Fibonacci Quarterly journal. And, as you might suspect, the Fibonacci series has something to do 
with establishing initial runs for external sorts.  
 
Recall that we initially had one run on tape T2, and 2 runs on tape T1. Note that the numbers {1,2} 
are two sequential numbers in the Fibonacci series. After our first merge, we had one run on T1 
and one run on T2. Note that the numbers {1,1} are two sequential numbers in the Fibonacci series, 
only one notch down. We could predict, in fact, that if we had 13 runs on T2, and 21 runs on T1 
{13,21}, we would be left with 8 runs on T1 and 13 runs on T3 {8,13} after one pass. Successive 
passes would result in run counts of {5,8}, {3,5}, {2,3}, {1,1}, and {0,1}, for a total of 7 passes. This 
arrangement is ideal, and will result in the minimum number of passes. Should data actually be on 
tape, this is a big savings, as tapes must be mounted and rewound for each pass. For more than 
2 tapes, higher-order Fibonacci numbers are used.  



 
Initially, all the data is on one tape. The tape is read, and runs are distributed to other tapes in the 
system. After the initial runs are created, they are merged as described above. One method we 
could use to create initial runs is to read a batch of records into memory, sort the records, and write 
them out. This process would continue until we had exhausted the input tape. An alternative 
algorithm, replacement selection, allows for longer runs. A buffer is allocated in memory to act as 
a holding place for several records. Initially, the buffer is filled. Then, the following steps are 
repeated until the input is exhausted:  
 

· Select the record with the smallest key that is >= the key of the last record written.  
· If all keys are smaller than the key of the last record written, then we have reached the end 

of a run. Select the record with the smallest key for the first record of the next run.  
· Write the selected record.  
· Replace the selected record with a new record from input.  

 
Figure 4-2 illustrates replacement selection for a small file. To keep things simple, I’ve allocated a 
2-record buffer. Typically, such a buffer would hold thousands of records. We load the buffer in 
step B, and write the record with the smallest key (6) in step C. This is replaced with the next record 
(key 8). We select the smallest key >= 6 in step D. This is key 7. After writing key 7, we replace it 
with key 4. This process repeats until step F, where our last key written was 8, and all keys are less 
than 8. At this point, we terminate the run, and start another. 
  

Step Input Buffer Output 
A 5-3-4-8-6-7   
B 5-3-4-8 6-7  
C 5-3-4 8-7 6 
D 5-3 8-4 6-7 
E 5 3-4 6-7-8 
F  5-4 6-7-8 | 3 
G  5 6-7-8 | 3-4 
H   6-7-8 | 3-4-5 

 
Figure 4-2: Replacement Selection 

 
This strategy simply utilizes an intermediate buffer to hold values until the appropriate time for 
output. Using random numbers as input, the average length of a run is twice the length of the buffer. 
However, if the data is somewhat ordered, runs can be extremely long. Thus, this method is more 
effective than doing partial sorts.  
 
When selecting the next output record, we need to find the smallest key >= the last key written. 
One way to do this is to scan the entire list, searching for the appropriate key. However, when the 
buffer holds thousands of records, execution time becomes prohibitive. An alternative method is to 
use a binary tree structure, so that we only compare lg n items.  

Implementation in C 
An ANSI-C implementation of an external sort is included. Function makeRuns calls readRec to 
read the next record. Function readRec employs the replacement selection algorithm (utilizing a 
binary tree) to fetch the next record, and makeRuns distributes the records in a Fibonacci 
distribution. If the number of runs is not a perfect Fibonacci number, dummy runs are simulated at 
the beginning of each file. Function mergeSort is then called to do a polyphase merge sort on the 
runs.  

Implementation in Visual Basic 
Not implemented. 

http://epaperpress.com/sortsearch/txt/ext.txt


Dictionaries 
Hash Tables 
Hash tables are a simple and effective method to implement dictionaries. Average time to search 
for an element is O(1), while worst-case time is O(n). Cormen [2009] and Knuth [1998] both contain 
excellent discussions on hashing.  

Theory 
A hash table is simply an array that is addressed via a hash function. For example, in Figure 3-1, 
hashTable is an array with 8 elements. Each element is a pointer to a linked list of numeric data. 
The hash function for this example simply divides the data key by 8, and uses the remainder as an 
index into the table. This yields a number from 0 to 7. Since the range of indices for hashTable is 
0 to 7, we are guaranteed that the index is valid. 

 
Figure 3-1: A Hash Table 

 
To insert a new item in the table, we hash the key to determine which list the item goes on, and 
then insert the item at the beginning of the list. For example, to insert 11, we divide 11 by 8 giving 
a remainder of 3. Thus, 11 goes on the list starting at hashTable[3]. To find a number, we hash 
the number and chain down the correct list to see if it is in the table. To delete a number, we find 
the number and remove the node from the linked list.  
 
Entries in the hash table are dynamically allocated and entered on a linked list associated with each 
hash table entry. This technique is known as chaining. An alternative method, where all entries are 
stored in the hash table itself, is known as open addressing and may be found in the references.  
 
If the hash function is uniform, or equally distributes the data keys among the hash table indices, 
then hashing effectively subdivides the list to be searched. Worst-case behavior occurs when all 
keys hash to the same index. Then we simply have a single linked list that must be sequentially 
searched. Consequently, it is important to choose a good hash function. Several methods may be 
used to hash key values. To illustrate the techniques, I will assume unsigned char is 8-bits, 
unsigned short int is 16-bits and unsigned long int is 32-bits.  
  

http://www.amazon.com/exec/obidos/ASIN/0262033844/none01
http://www.amazon.com/exec/obidos/ASIN/0201896850/none01


Division method (tablesize = prime). This technique was used in the preceeding example. A 
hashValue, from 0 to (HASH_TABLE_SIZE - 1), is computed by dividing the key value by the 
size of the hash table and taking the remainder. For example:  
 

typedef int HashIndexType; 
 
HashIndexType hash(int key) { 
    return key % HASH_TABLE_SIZE; 
} 

 
Selecting an appropriate HASH_TABLE_SIZE is important to the success of this method. For 
example, a HASH_TABLE_SIZE divisible by two would yield even hash values for even keys, 
and odd hash values for odd keys. This is an undesirable property, as all keys would hash to 
even values if they happened to be even. If HASH_TABLE_SIZE is a power of two, then the 
hash function simply selects a subset of the key bits as the table index. To obtain a more 
random scattering, HASH_TABLE_SIZE should be a prime number not too close to a power 
of two.  
 
Multiplication method (tablesize = 2n). The multiplication method may be used for a 
HASH_TABLE_SIZE that is a power of 2. The key is multiplied by a constant, and then the 
necessary bits are extracted to index into the table. Knuth recommends using the the golden 
ratio, or (sqrt(5) - 1)/2, to determine the constant. Assume the hash table contains 32 (25) 
entries and is indexed by an unsigned char (8 bits). First construct a multiplier based on the 
index and golden ratio. In this example, the multiplier is 28 x (sqrt(5) - 1)/2, or 158. This scales 
the golden ratio so that the first bit of the multiplier is "1". 

 
         xxxxxxxx key 
         xxxxxxxx multiplier (158) 
         xxxxxxxx 
       x xxxxxxx 
      xx xxxxxx 
     xxx xxxxx 
    xxxx xxxx 
   xxxxx xxx 
  xxxxxx xx 
 xxxxxxx x        
xxxxxxxx bbbbbxxx product 

 
Multiply the key by 158 and extract the 5 most significant bits of the least significant word. 
These bits are indicated by "bbbbb" in the above example, and represent a thorough mixing of 
the multiplier and key. The following definitions may be used for the multiplication method:  
 
 

/* 8-bit index */ 
typedef unsigned char HashIndexType; 
static const HashIndexType M = 158; 
   
/* 16-bit index */ 
typedef unsigned short int HashIndexType; 
static const HashIndexType M = 40503; 
   
/* 32-bit index */ 
typedef unsigned long int HashIndexType; 
static const HashIndexType M = 2654435769; 
   
/* w=bitwidth(HashIndexType), size of table=2**n */ 



static const int S = w - n; 
HashIndexType hashValue = (HashIndexType)(M * key) >> S; 

 
For example, if HASH_TABLE_SIZE is 1024 (210), then a 16-bit index is sufficient and S would 
be assigned a value of 16 - 10 = 6. Thus, we have: 
 

typedef unsigned short int HashIndexType; 
   
HashIndexType hash(int key) { 
    static const HashIndexType M = 40503; 
    static const int S = 6; 
    return (HashIndexType)(M * key) >> S; 
} 

 
Variable string addition method (tablesize = 256). To hash a variable-length string, each 
character is added, modulo 256, to a total. A hashValue, range 0-255, is computed.  
 

unsigned char hash(char *str) { 
    unsigned char h = 0; 
    while (*str) h += *str++; 
    return h; 
} 

 
Variable string exclusive-or method (tablesize = 256). This method is similar to the addition 
method, but successfully distinguishes similar words and anagrams. To obtain a hash value in 
the range 0-255, all bytes in the string are exclusive-or’d together. However, in the process of 
doing each exclusive-or, a random component is introduced.  
 

unsigned char rand8[256]; 
   
unsigned char hash(char *str) { 
    unsigned char h = 0; 
    while (*str) h = rand8[h ^ *str++]; 
    return h; 
} 

 
Rand8 is a table of 256 8-bit unique random numbers. The exact ordering is not critical. The 
exclusive-or method has its basis in cryptography, and is quite effective (Pearson [1990]).  
 

http://www.acm.org/pubs/citations/journals/cacm/1990-33-6/p677-pearson/


Variable string exclusive-or method (tablesize <= 65536). If we hash the string twice, we 
may derive a hash value for an arbitrary table size up to 65536. The second time the string is 
hashed, one is added to the first character. Then the two 8-bit hash values are concatenated 
together to form a 16-bit hash value.  
 

unsigned char rand8[256]; 
 
unsigned short int hash(char *str) { 
    unsigned short int h; 
    unsigned char h1, h2; 
 
    if (*str == 0) return 0; 
    h1 = *str; h2 = *str + 1; 
    str++; 
    while (*str) { 
        h1 = rand8[h1 ^ *str]; 
        h2 = rand8[h2 ^ *str]; 
        str++; 
    } 
   
    /* h is in range 0..65535 */ 
    h = ((unsigned short int)h1 << 8)|(unsigned short int)h2; 
  
    /* use division method to scale */ 
    return h % HASH_TABLE_SIZE 
} 

 
Assuming n data items, the hash table size should be large enough to accommodate a 
reasonable number of entries. As seen in Table 3-1, a small table size substantially increases 
the average time to find a key. A hash table may be viewed as a collection of linked lists. As 
the table becomes larger, the number of lists increases, and the average number of nodes on 
each list decreases. If the table size is 1, then the table is really a single linked list of length n. 
Assuming a perfect hash function, a table size of 2 has two lists of length n/2. If the table size 
is 100, then we have 100 lists of length n/100. This considerably reduces the length of the list 
to be searched. 

 
There is considerable leeway in the choice of table size.  
 

size time  size time 
1 869  128 9 
2 432  256 6 
4 214  512 4 
8 106  1024 4 

16 54  2048 3 
32 28  4096 3 
64 15  8192 3 

 
Table 3-1: HASH_TABLE_SIZE vs. Average Search Time (us), 4096 entries 



Implementation in C 
An ANSI-C implementation of a hash table is included. Typedefs recType, keyType and 
comparison operator compEQ should be altered to reflect the data stored in the table. The 
hashTableSize must be determined and the hashTable allocated. The division method was used 
in the hash function. Function insert allocates a new node and inserts it in the table. Function 
delete deletes and frees a node from the table. Function find searches the table for a particular 
value. 

Implementation in Visual Basic 
The hash table algorithm has been implemented as objects, using a module for the algorithm, and 
a class for the nodes. It has also been implemented as a class, using arrays. The array 
implementation is recommended.  

Binary Search Trees 
In the introduction we used the binary search algorithm to find data stored in an array. This method 
is very effective, as each iteration reduced the number of items to search by one-half. However, 
since data was stored in an array, insertions and deletions were not efficient. Binary search trees 
store data in nodes that are linked in a tree-like fashion. For randomly inserted data, search time is 
O(lg n). Worst-case behavior occurs when ordered data is inserted. In this case the search time is 
O(n). See Cormen [2009] for a more detailed description.  

Theory 
A binary search tree is a tree where each node has a left and right child. Either child, or both 
children, may be missing. Figure 3-2 illustrates a binary search tree. Assuming k represents the 
value of a given node, then a binary search tree also has the following property: all children to the 
left of the node have values smaller than k, and all children to the right of the node have values 
larger than k. The top of a tree is known as the root, and the exposed nodes at the bottom are 
known as leaves. In Figure 3-2, the root is node 20 and the leaves are nodes 4, 16, 37, and 43. 
The height of a tree is the length of the longest path from root to leaf. For this example the tree 
height is 2.  
 

 
Figure 3-2: A Binary Search Tree 

 
To search a tree for a given value, we start at the root and work down. For example, to search for 
16, we first note that 16 < 20 and we traverse to the left child. The second comparison finds that 
16 > 7, so we traverse to the right child. On the third comparison, we succeed.  
 
Each comparison results in reducing the number of items to inspect by one-half. In this respect, the 
algorithm is similar to a binary search on an array. However, this is true only if the tree is balanced. 
For example, Figure 3-3 shows another tree containing the same values. While it is a binary search 
tree, its behavior is more like that of a linked list, with search time increasing proportional to the 
number of elements stored. 
  

http://epaperpress.com/sortsearch/txt/has.txt
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Figure 3-3: An Unbalanced Binary Search Tree 
 

Insertion and Deletion 
Let us examine insertions in a binary search tree to determine the conditions that can cause an 
unbalanced tree. To insert an 18 in the tree in Figure 3-2, we first search for that number. This 
causes us to arrive at node 16 with nowhere to go. Since 18 > 16, we simply add node 18 to the 
right child of node 16 (Figure 3-4).  
 
Now we can see how an unbalanced tree can occur. If the data is presented in an ascending 
sequence, each node will be added to the right of the previous node. This will create one long 
chain, or linked list. However, if data is presented for insertion in a random order, then a more 
balanced tree is possible.  
 
Deletions are similar, but require that the binary search tree property be maintained. For example, 
if node 20 in Figure 3-4 is removed, it must be replaced by node 18 or node 37. Assuming we 
replace a node by its successor, the resulting tree is shown in Figure 3-5. The rationale for this 
choice is as follows. The successor for node 20 must be chosen such that all nodes to the right are 
larger. Therefore we need to select the smallest valued node to the right of node 20. To make the 
selection, chain once to the right (node 38), and then chain to the left until the last node is found 
(node 37). This is the successor for node 20.  
 

 
Figure 3-4: Binary Tree After Adding Node 18 

 



 
Figure 3-5: Binary Tree After Deleting Node 20 

 

Implementation in C 
An ANSI-C implementation for a binary search tree is included. Typedefs recType, keyType, and 
comparison operators compLT and compEQ should be altered to reflect the data stored in the 
tree. Each Node consists of left, right, and parent pointers designating each child and the parent. 
The tree is based at root, and is initially NULL. Function insert allocates a new node and inserts 
it in the tree. Function delete deletes and frees a node from the tree. Function find searches the 
tree for a particular value.  

Implementation in Visual Basic 
The binary tree algorithm has been implemented as objects, using a module for the algorithm, and 
a class for the nodes. It has also been implemented as a class, using arrays. The array 
implementation is recommended.  

Red-Black Trees 
Binary search trees work best when they are balanced or the path length from root to any leaf is 
within some bounds. The red-black tree algorithm is a method for balancing trees. The name 
derives from the fact that each node is colored red or black, and the color of the node is instrumental 
in determining the balance of the tree. During insert and delete operations nodes may be rotated 
to maintain tree balance. Both average and worst-case insert, delete, and search time is O(lg n). 
For details, consult Cormen [2009].  

Theory 
A red-black tree is a balanced binary search tree with the following properties: 
 

1. Every node is colored red or black.  
2. Every leaf is a NIL node, and is colored black.  
3. If a node is red, then both its children are black.  
4. Every simple path from a node to a descendant leaf contains the same number of black 

nodes.  
5. The root is always black.  

 
The number of black nodes on a path from root to leaf is known as the black-height of a tree. The 
above properties guarantee that any path from the root to a leaf is no more than twice as long as 
any other path. To see why this is true, consider a tree with a black-height of three. The shortest 
distance from root to leaf is two (B-B-B). The longest distance from root to leaf is four (B-R-B-R-B). 
It is not possible to insert more black nodes as this would violate property 4. Since red nodes must 
have black children (property 3), having two red nodes in a row is not allowed. The largest path we 
can construct consists of an alternation of red and black nodes.  
 

http://epaperpress.com/sortsearch/txt/bin.txt
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In general, given a tree with a black-height of n, the shortest distance from root to leaf is n - 1, and 
the longest distance is 2(n - 1). All operations on the tree must maintain the properties listed above. 
In particular, operations that insert or delete nodes from the tree must abide by these rules. 

Insertion 
To insert a node, search the tree for an insertion point and add the node to the tree. The new node 
replaces an existing NIL node at the bottom of the tree, and has two NIL nodes as children. In the 
implementation, a NIL node is simply a pointer to a common sentinel node that is colored black. 
Attention C programmers — this is not a NULL pointer! After insertion the new node is colored red. 
Then the parent of the node is examined to determine if the red-black tree properties have been 
maintained. If necessary, make adjustments to balance the tree.  
 
The black-height property (property 4) is preserved when we insert a red node with two NIL 
children. We must also ensure that both children of a red node are black (property 3). Although 
both children of the new node are black (they’re NIL), consider the case where the parent of the 
new node is red. Inserting a red node under a red parent would violate this property. There are two 
cases to consider. 

Red Parent, Red Uncle 
Figure 3-6 illustrates a red-red violation. Node X is the newly inserted node, and both parent and 
uncle are colored red. A simple recoloring removes the red-red violation. After recoloring the 
grandparent (node B) must be checked for validity, as its parent may also be red and we can't have 
two red nodes in a row. This has the effect of propagating a red node up the tree. On completion 
the root of the tree is marked black. If it was originally red the black-height of the tree increases by 
one. 
  

 
Figure 3-6: Insertion - Red Parent, Red Uncle 

Red Parent, Black Uncle 
Figure 3-7 illustrates a red-red violation where the uncle is colored black. If we attempt to recolor 
nodes, changing node A to black, the tree is out of balance since we've increased the black-height 
of the left branch without changing the right branch. If we also change node B to red, then the 
black-height of both branches is reduced and the tree is still out of balance. If we start over and 
change node A to black and node C to red the situation is worse since we've increased the black-



height of the left branch, and decreased the black-height of the right branch. To solve this problem 
we will rotate and recolor the nodes as shown. At this point the algorithm terminates since the top 
of the subtree (node A) is colored black and no red-red conflicts were introduced. 
  

 
Figure 3-7: Insertion - Red Parent, Black Uncle 

Termination 
To insert a node we may have to recolor or rotate to preserve the red-black tree properties. If 
rotation is done, the algorithm terminates. For simple recolorings we're left with a red node at the 
head of the subtree and must travel up the tree one step and repeat the process to ensure the 
black-height properties are preserved. In the worst case we must go all the way to the root. Timing 
for insertion is O(lg n). The technique and timing for deletion is similar.  

Implementation in C 
An ANSI-C implementation for red-black trees is included. Typedefs recType, keyType, and 
comparison operators compLT and compEQ should be altered to reflect the data stored in the 
tree. Each node consists of left, right, and parent pointers designating each child and the parent. 
The node color is stored in color, and is either RED or BLACK. All leaf nodes of the tree are sentinel 
nodes, to simplify coding. The tree is based at root, and initially is a sentinel node. 
 
Function insert allocates a new node and inserts it in the tree. Subsequently, it calls insertFixup 
to ensure that the red-black tree properties are maintained. Function erase deletes a node from 
the tree. To maintain red-black tree properties, deleteFixup is called. Function find searches the 
tree for a particular value. Support for iterators is included.  

Implementation in Visual Basic 
The red-black tree algorithm has been implemented as objects, using a module for the algorithm, 
and a class for the nodes. It has also been implemented as a class, using arrays. The array 
implementation is recommended.  
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Skip Lists 
Skip lists are linked lists that allow you to skip to the correct node. The performance bottleneck 
inherent in a sequential scan is avoided, while insertion and deletion remain relatively efficient. 
Average search time is O(lg n). Worst-case search time is O(n), but is extremely unlikely. An 
excellent reference for skip lists is Pugh [1990].  

Theory 
The indexing scheme employed in skip lists is similar in nature to the method used to lookup names 
in an address book. To lookup a name, you index to the tab representing the first character of the 
desired entry. In Figure 3-8, for example, the top-most list represents a simple linked list with no 
tabs. Adding tabs (middle figure) facilitates the search. In this case, level-1 pointers are traversed. 
Once the correct segment of the list is found, level-0 pointers are traversed to find the specific entry. 
 

 
Figure 3-8: Skip List Construction 

 
The indexing scheme may be extended as shown in the bottom figure, where we now have an 
index to the index. To locate an item, level-2 pointers are traversed until the correct segment of the 
list is identified. Subsequently, level-1 and level-0 pointers are traversed.  
 
During insertion the number of pointers required for a new node must be determined. This is easily 
resolved using a probabilistic technique. A random number generator is used to toss a computer 
coin. When inserting a new node, the coin is tossed to determine if it should be level-1. If you lose, 
the coin is tossed again to determine if the node should be level-2. Another loss and the coin is 
tossed to determine if the node should be level-3. This process repeats until you win. If only one 
level (level-0) is implemented, the data structure is a simple linked-list with O(n) search time. 
However, if sufficient levels are implemented, the skip list may be viewed as a tree with the root at 
the highest level, and search time is O(lg n).  
 
The skip list algorithm has a probabilistic component, and thus a probabilistic bounds on the time 
required to execute. However, these bounds are quite tight in normal circumstances. For example, 
to search a list containing 1000 items, the probability that search time will be 5 times the average 
is about 1 in 1,000,000,000,000,000,000.  

Implementation in C 
An ANSI-C implementation for skip lists is included. Typedefs recType, keyType, and comparison 
operators compLT and compEQ should be altered to reflect the data stored in the list. In addition, 
MAXLEVEL should be set based on the maximum size of the dataset.  
 

http://epaperpress.com/sortsearch/download/skiplist.pdf
http://epaperpress.com/sortsearch/txt/skl.txt


To initialize, initList is called. The list header is allocated and initialized. To indicate an empty list, 
all levels are set to point to the header. Function insert allocates a new node, searches for the 
correct insertion point, and inserts it in the list. While searching, the update array maintains pointers 
to the upper-level nodes encountered. This information is subsequently used to establish correct 
links for the newly inserted node. The newLevel is determined using a random number generator, 
and the node allocated. The forward links are then established using information from the update 
array. Function delete deletes and frees a node, and is implemented in a similar manner. Function 
find searches the list for a particular value.  

Implementation in Visual Basic 
Each node in a skip list varies in size depending on a random number generated at time of insertion. 
Instantiating a class with dynamic size is a bit of a sticky wicket in Visual Basic.  

Comparison 
We have seen several ways to construct dictionaries: hash tables, unbalanced binary search trees, 
red-black trees, and skip lists. There are several factors that influence the choice of an algorithm:  
 

Sorted output. If sorted output is required, then hash tables are not a viable alternative. Entries 
are stored in the table based on their hashed value, with no other ordering. For binary trees, 
the story is different. An in-order tree walk will produce a sorted list. For example:  
 

void WalkTree(Node *P) { 
    if (P == NIL) return; 
    WalkTree(P->Left); 
 
    /* examine P->Data here */ 
 
    WalkTree(P->Right); 
} 
WalkTree(Root); 
 

To examine skip list nodes in order, simply chain through the level-0 pointers. For example: 
 

Node *P = List.Hdr->Forward[0]; 
while (P != NIL) { 
 
    /* examine P->Data here */ 
 
    P = P->Forward[0]; 
} 

 
Space. The amount of memory required to store a value should be minimized. This is especially 
true if many small nodes are to be allocated.  
For hash tables, only one forward pointer per node is required. In addition, the hash table itself 
must be allocated.  
 
For red-black trees, each node has a left, right, and parent pointer. In addition, the color of each 
node must be recorded. Although this requires only one bit, more space may be allocated to 
ensure that the size of the structure is properly aligned. Therefore each node in a red-black 
tree requires enough space for 3-4 pointers.  
 
For skip lists, each node has a level-0 forward pointer. The probability of having a level-1 
pointer is 1/2. The probability of having a level-2 pointer is 1/4. In general, the number of forward 
pointers per node is  
 



n = 1 + 1/2 + 1/4 + ... = 2. 
 
Time. The algorithm should be efficient. This is especially true if a large dataset is expected. 
Table 3-2 compares the search time for each algorithm. Note that worst-case behavior for hash 
tables and skip lists is extremely unlikely. Actual timing tests are described below.  
 
Simplicity. If the algorithm is short and easy to understand, fewer mistakes may be made. This 
not only makes your life easy, but the maintenance programmer entrusted with the task of 
making repairs will appreciate any efforts you make in this area. The number of statements 
required for each algorithm is listed in Table 3-2.  

 
method statements average time worst-case time 
hash table 26 O(1) O(n) 
unbalanced tree 41 O(lg n) O(n) 
red-black tree 120 O(lg n) O(lg n) 
skip list 55 O(lg n) O(n) 

 
Table 3-2: Comparison of Dictionaries 

 
Average time for insert, search, and delete operations on a database of 65,536 (216) randomly 
input items may be found in Table 3-3. For this test the hash table size was 10,009 and 16 index 
levels were allowed for the skip list. Although there is some variation in the timings for the four 
methods, they are close enough so that other considerations should come into play when selecting 
an algorithm. 
 

method insert search delete 
hash table 18 8 10 
unbalanced tree 37 17 26 
red-black tree 40 16 37 
skip list 48 31 35 

 
Table 3-3: Average Time (us), 65536 Items, Random Input 

 
Table 3-4 shows the average search time for two sets of data: a random set, where all values are 
unique, and an ordered set, where values are in ascending order. Ordered input creates a worst-
case scenario for unbalanced tree algorithms, as the tree ends up being a simple linked list. The 
times shown are for a single search operation. If we were to search for all items in a database of 
65,536 values, a red-black tree algorithm would take .6 seconds, while an unbalanced tree 
algorithm would take 1 hour.  
 

random 
input 

count hash table unbalanced tree red-black tree skip list 
16 4 3 2 5 
256 3 4 4 9 
4,096 3 7 6 12 
65,536 8 17 16 31 

ordered 
input 

16 3 4 2 4 
256 3 47 4 7 
4,096 3 1,033 6 11 
65,536 7 55,019 9 15 

 
Table 3-4: Average Search Time (us) 
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